1 Application
3 Dialects
5+ Architectures

Platform independence with Papyrus-xtUML

October 2018
Levi Starrett
Goals

- Demonstrate platform independent modeling using Papyrus-xtUML
- Provide background on the modeling dialects supported by Papyrus-xtUML
- Discuss some of the differences between the supported dialects and architectures
1 Application

- Simulation of a GPS running watch
- Keeps time and distance of a simulated “jog”
 - Maintains lap times; can clear and reset
 - Toggles through multiple display modes
1 Application

- System model
1 Application

Class model
1 Application

- GPS metrics*
 - 3 domains
 - 9 classes
 - 29 attributes
 - 8 associations
 - 328 statements

- Demo: GPS in Verifier

* not including "Goal" related classes
3 Dialects

■ 1. xtUML
 — Formal specification of the Shlaer-Mellor method of MDA
 — Specified in an xtUML meta-model
 — First introduced by Project Technology, then Mentor Graphics, now the open source community (xtuml.org)
 — Specifies graphical and semantic rules for models
 — Executable and translatable
 — Closely associated with the Papyrus-xtUML MDA tool
3 Dialects

2. OAL

- Object Action Language
- Specifies rules for processing of data in xtUML models
- Specified in the xtUML meta-model and a BNF grammar
- First introduced by Project Technology, then Mentor Graphics, now the open source community (xtuml.org)
- Default action language for xtUML
- Interpretable by Verifier in Papyrus-xtUML
3 Dialects

3. MASL

- Model and Action Specification Language
- Formal specification of the Kennedy-Carter method of MDA (which has its roots in S-M)
- Created with inspiration drawn from iUML, ASL, and Ada with added syntax for “structural” model elements
- No graphics
- Translatable by a parser and model compiler
- Supported by Papyrus-xtUML in xtUML models (action language only)
Demo

- Running GPS Watch (MASL) application on Linux
- MASL Inspector
xtUML/OAL and MASL compatibility

- Additional tool support
 - xtUML to MASL model compiler (exporter)
 - MASL to xtUML parser/model-to-model translator

- Mapping techniques
 - Idiomatic modeling constraints
 - Line by line action language mapping
 - Tool support for differences (e.g. polymorphic events)
5+ Architectures

- 1. Papyrus-xtUML Verifier (interpreted simulation)
- 2. MC-3020 C binary on Windows
- 3. MC-3020 C binary on macOS
- 4. MC-3020 C binary on Linux
- 5. MASL C++ binary on Linux
- Bonus!
 - MC-3020 C binary on Arduino
 - MASL C++ binary on Raspberry Pi (Raspbian)
5+ Architectures

- **Arduino Uno**
 - ATmega328 microcontroller
 - 32 KB flash storage
 - 2048 bytes dynamic memory
 - 8-bit AVR architecture

- **Usage by GPS Watch**
 - 1593 bytes used for global data
 - 455 bytes available for the stack

- **Handling memory constraints with MC-3020**
 - Limit instance extent sizes
 - Identify singleton classes
 - Avoid using strings (or minimize string size)
5+ Architectures

- Raspberry Pi 3 Model B v1.2
 - ARM Cortex-A7 CPU
 - 32 GB flash storage (microSD)
 - 1 GB dynamic memory
 - 32-bit ARM architecture
 - Runs Linux (Raspbian)

- Usage by GPS Watch
 - ~ 50KB peak memory used in one minute run

- MASL architecture design goals
 - Stability
 - Dynamic loading and linking of independent modules
 - Persistent instance data
Demo

MC-3020 from ROX Software

Arduino

AVR

MASL

Raspberry Pi

Cortex

Intelligent Processors by ARM

www.onefact.net
Demo

Cycle through display modes
Questions?