
Create and Play your PacMan Game with the GEMOC Studio

Dorian Leroy 1 Erwan Bousse 2 Manuel Wimmer 2 Benoit Combemale 3

Wieland Schwinger 1

1JKU Linz

2TU Wien

3University of Toulouse (UT2J)

September 17th 2017



Introduction Overview of the Approach Demo Conclusion

Context

Behavioral models often need to interact with the outside
world during their execution, eg. to process incoming
domain-level event occurrences
Adds complexity to the operational semantics of a DSL:

impacts content and scheduling of execution rules,
requires an interruption mechanism,
requires an interface allowing external actors to send events.

Process
message

incoming
message

Tedious and error-prone task that must be repeated for each executable DSL

Dorian Leroy , Erwan Bousse , Manuel Wimmer , Benoit Combemale , Wieland Schwinger JKU Linz, TU Wien, University of Toulouse (UT2J)



Introduction Overview of the Approach Demo Conclusion

Context

Behavioral models often need to interact with the outside
world during their execution, eg. to process incoming
domain-level event occurrences
Adds complexity to the operational semantics of a DSL:

impacts content and scheduling of execution rules,
requires an interruption mechanism,
requires an interface allowing external actors to send events.

Process
message

incoming
message

Tedious and error-prone task that must be repeated for each executable DSL

Dorian Leroy , Erwan Bousse , Manuel Wimmer , Benoit Combemale , Wieland Schwinger JKU Linz, TU Wien, University of Toulouse (UT2J)



Introduction Overview of the Approach Demo Conclusion

Context

Behavioral models often need to interact with the outside
world during their execution, eg. to process incoming
domain-level event occurrences
Adds complexity to the operational semantics of a DSL:

impacts content and scheduling of execution rules,
requires an interruption mechanism,
requires an interface allowing external actors to send events.

Process
message

incoming
message

Tedious and error-prone task that must be repeated for each executable DSL

Dorian Leroy , Erwan Bousse , Manuel Wimmer , Benoit Combemale , Wieland Schwinger JKU Linz, TU Wien, University of Toulouse (UT2J)



Introduction Overview of the Approach Demo Conclusion

Example: The PacMan DSL

Execution Rules

Abstract Syntax

entities
0..*

tiles
0..*

BoardAbstractTile

PassableTileWallTile
Entity

+initialTile

Pacman Ghost

Execution Metamodel

PassableTile

Ghost

targetTile
1

top
0..1

bottom
0..1

left
0..1 right

0..1

SuperPellet Pellet

AbstractPellet

currentTile
1

AbstractTile

0..1
pellet

Tile

Pacman
+pelletsEaten: int
+lives: int
+energized: boolean

Entity
+speed: int

Tile GhostHouseTile

merges

run(Board: board)

update(Board: board, int: deltaTime)

update(Entity: entity, int: deltaTime)

modifySpeed(Entity: entity, int: speed)

activate(Ghost: ghost)

energize(Pacman: pacman)enterNextTile(Entity: entity)

imports

initialTile

1

up(Pacman: pacman) down(Pacman: pacman) left(Pacman: pacman) right(Pacman: pacman)

Dorian Leroy , Erwan Bousse , Manuel Wimmer , Benoit Combemale , Wieland Schwinger JKU Linz, TU Wien, University of Toulouse (UT2J)



Introduction Overview of the Approach Demo Conclusion

Example: The PacMan DSL

Execution Rules

Abstract Syntax

entities
0..*

tiles
0..*

BoardAbstractTile

PassableTileWallTile
Entity

+initialTile

Pacman Ghost

Execution Metamodel

PassableTile

Ghost

targetTile
1

top
0..1

bottom
0..1

left
0..1 right

0..1

SuperPellet Pellet

AbstractPellet

currentTile
1

AbstractTile

0..1
pellet

Tile

Pacman
+pelletsEaten: int
+lives: int
+energized: boolean

Entity
+speed: int

Tile GhostHouseTile

merges

run(Board: board)

update(Board: board, int: deltaTime)

update(Entity: entity, int: deltaTime)

modifySpeed(Entity: entity, int: speed)

activate(Ghost: ghost)

energize(Pacman: pacman)enterNextTile(Entity: entity)

imports

initialTile

1

up(Pacman: pacman) down(Pacman: pacman) left(Pacman: pacman) right(Pacman: pacman)

How to safely call these execution rules, while main execution loop of the game is ongoing?

Dorian Leroy , Erwan Bousse , Manuel Wimmer , Benoit Combemale , Wieland Schwinger JKU Linz, TU Wien, University of Toulouse (UT2J)



Introduction Overview of the Approach Demo Conclusion

Problem and Idea

How to avoid rewriting operational semantics to define domain-specific events
that may safely interrupt the execution flow?

Idea
Take the tedious and repetitive part out of the hands of the language engineer by
providing:

An annotation mechanism to easily define events,
The generation of an interface to send events at runtime,
Generic event management reusable across DSLs.

Dorian Leroy , Erwan Bousse , Manuel Wimmer , Benoit Combemale , Wieland Schwinger JKU Linz, TU Wien, University of Toulouse (UT2J)



Introduction Overview of the Approach Demo Conclusion

Problem and Idea

How to avoid rewriting operational semantics to define domain-specific events
that may safely interrupt the execution flow?

Idea
Take the tedious and repetitive part out of the hands of the language engineer by
providing:

An annotation mechanism to easily define events,
The generation of an interface to send events at runtime,
Generic event management reusable across DSLs.

Dorian Leroy , Erwan Bousse , Manuel Wimmer , Benoit Combemale , Wieland Schwinger JKU Linz, TU Wien, University of Toulouse (UT2J)



Introduction Overview of the Approach Demo Conclusion

Summary of the Approach

A generative approach to obtain a domain-specific event language and its
interpreter from annotated execution rules,
A generic event queue manager, incorporating event queuing and dispatch into
the execution loop.

EventQueueManager 

processEvents() 

loop 

EventInterpreter 

[for evt in eventQueue] 
dispatchEvent(evt) 

canProcessEvent(evt) 

canProcess 

opt [canProcess] 
executeRule 
(evt.name,evt.params) 

manageEvents() 

ExecutionEngine 

Dorian Leroy , Erwan Bousse , Manuel Wimmer , Benoit Combemale , Wieland Schwinger JKU Linz, TU Wien, University of Toulouse (UT2J)



Introduction Overview of the Approach Demo Conclusion

Event Metamodel and Interpreter Generation

The generative approach relies on annotated execution rules to locate event
handlers and event preconditions.
Event metaclasses are generated from event handlers to populate the event
metamodel.
An event interpreter mapping instances of event metaclasses to event handler
and precondition calls is generated.

Dorian Leroy , Erwan Bousse , Manuel Wimmer , Benoit Combemale , Wieland Schwinger JKU Linz, TU Wien, University of Toulouse (UT2J)



Introduction Overview of the Approach Demo Conclusion

Event Metamodel and Interpreter Generation

The generative approach relies on annotated execution rules to locate event
handlers and event preconditions.
Event metaclasses are generated from event handlers to populate the event
metamodel.
An event interpreter mapping instances of event metaclasses to event handler
and precondition calls is generated.

Dorian Leroy , Erwan Bousse , Manuel Wimmer , Benoit Combemale , Wieland Schwinger JKU Linz, TU Wien, University of Toulouse (UT2J)



Introduction Overview of the Approach Demo Conclusion

Event Metamodel and Interpreter Generation

The generative approach relies on annotated execution rules to locate event
handlers and event preconditions.
Event metaclasses are generated from event handlers to populate the event
metamodel.
An event interpreter mapping instances of event metaclasses to event handler
and precondition calls is generated.

Dorian Leroy , Erwan Bousse , Manuel Wimmer , Benoit Combemale , Wieland Schwinger JKU Linz, TU Wien, University of Toulouse (UT2J)



Introduction Overview of the Approach Demo Conclusion

Demo

...

Dorian Leroy , Erwan Bousse , Manuel Wimmer , Benoit Combemale , Wieland Schwinger JKU Linz, TU Wien, University of Toulouse (UT2J)



Introduction Overview of the Approach Demo Conclusion

Conclusion & Future Work

Adapting semantics to event handling is difficult
Proposed solution:

non-intrusive annotation of execution rules and generation of a
generation of an interface to inject event occurrences
reuse of an event queue and interruption mechanism

Eclipse Research Consortium GEMOC: sustains the
GEMOC studio as a research platform to experiment on
the globalization of, possibly executable and
heterogeneous, modeling languages
Contributors are welcome!

http://gemoc.org/
https://github.com/eclipse/gemoc-studio-modeldebugging

Dorian Leroy , Erwan Bousse , Manuel Wimmer , Benoit Combemale , Wieland Schwinger JKU Linz, TU Wien, University of Toulouse (UT2J)

http://gemoc.org/
https://github.com/eclipse/gemoc-studio-modeldebugging


Introduction Overview of the Approach Demo Conclusion

Conclusion & Future Work

Adapting semantics to event handling is difficult
Proposed solution:

non-intrusive annotation of execution rules and generation of a
generation of an interface to inject event occurrences
reuse of an event queue and interruption mechanism

Eclipse Research Consortium GEMOC: sustains the
GEMOC studio as a research platform to experiment on
the globalization of, possibly executable and
heterogeneous, modeling languages
Contributors are welcome!

http://gemoc.org/
https://github.com/eclipse/gemoc-studio-modeldebugging

Dorian Leroy , Erwan Bousse , Manuel Wimmer , Benoit Combemale , Wieland Schwinger JKU Linz, TU Wien, University of Toulouse (UT2J)

http://gemoc.org/
https://github.com/eclipse/gemoc-studio-modeldebugging

	Introduction
	Overview of the Approach
	Demo
	Conclusion

